

LA-UR-19-29757

Approved for public release; distribution is unlimited.

Title: EDGEip - Intelligent Processing at the Edge to Enhance Efficiency

Author(s): Mudunuru, Maruti Kumar

Intended for: Report

Issued: 2019-09-26

EARTH AND ENVIRONMENTAL SCIENCES
LOS ALAMOS NATIONAL LABORATORY

"When oil is \$100 per barrel, everyone is an expert."

CEO of an Investment Banking Company 2018 Oil & Gas Executive Conference

2018 US OIL & GAS ESTIMATES

CHALLENGE

CUSTOMER KEY PROBLEM: COSTS

OPPORTUNITY: WHY AM I DOING THIS?

10%

increase in efficiency in drilling and completions

\$1 \(\lambda \)

savings per well

EXAMPLE: DECISION-DATA FROM SENSORS

SOLUTION: REAL-TIME MONITORING & SENSOR DATA PROCESSING

Real-time Monitoring with EDGEip

oil and gas wells

oil-water-gas separation

SOLUTION: REAL-TIME MONITORING & DATA PROCESSING

Sensor at the sell

EDGEip

SOLUTION: ACTIONABLE INFORMATION

SOLUTION: INCREASE IN PRODUCTION

VALUE PROPOSITION

For oil & gas producers that **do not have real-time information** on wells/production status, installing **EDGE**^{ip} software on their sensors will **reduce downtime, maintenance, and help make more money.**

US MARKET OPPORTUNITY

\$9B

Total Market
Enhanced Oil Production and
Well Drilling

\$900M

Total Addressable Market
Data Analytics for Predictive
Maintenance

\$300M

Targeted Segment

Data Processing at Sensor Edge

COMPETITIVE LANDSCAPE

WHY US?

Existing Oil & Gas partnership

High Performance Computing data processing capabilities

Sensor interface

Access to HUGE datasets

Cutting edge energy-efficient algorithms

BUSINESS MODEL

Sensor already installed at the well

Software
Customized to
Customer Sensor

Subscription or License

2

Before sensor is installed at a well

Partner with a
Sensor
Company

Customize to New Sensor

License

GO TO MARKET FOR COMMERCIALIZATION

Test EDGE^{ip}
on lab and fielddata and

Field Trials
with Los Alamos
Seismic Network
(LASN) and Chimayo,
NM Well

2019

Test EDGE^{ip} on
Raspberry Pi/Shake
in real-time
geophysical
monitoring at
Chimayo Well

2020

Test **EDGE**^{ip} software for Oil & Gas well monitoring with Producers/Operators/ Sensor Manufacturers

Commercialize tested EDGE^{ip}

NEXT STEPS: CAPITAL NEEDS

Looking for partnerships

- Data sets
- Sensor interface
- Field testing

TEAM & COLLABORATORS: TECHNICAL AND BUSINESS

TECHNICAL

- Maruti Kumar Mudunuru (Data Analytics, Machine Learning, Signal Processing)
- Vamshi Chillara (Collaborator: Sensors, Signal Processing)
- Peter Roberts (Field Deployment Collaborator: Seismic/Geophysical)
- Jeremy Webster (Field Deployment Collaborator: Seismic/Geophysical)
- Satish Karra (Technical Advisor: Data Analytics, Oil & Gas)
- Hari Viswanathan (Technical Advisor: Oil & Gas)
- Gowri Srinivasan (Technical Advisor: Data Analytics)
- Dipen Sinha (Technical Advisor: Sensors, Oil & Gas)
- Paul Johnson (Technical Advisor: Seismic/Geophysical)
- Velimir Vesselinov (Technical Advisor: Environmental Monitoring)
- George Guthrie (Technical Advisor: Oil & Gas, Seismic/Geophysical)

BUSINESS

- Don Winter (Investment Mentor)
- Paul Short (Investment Mentor)
- Don Hickmott (Business Development Mentor)
- Molly Cernicek (Business Development Mentor)

TECHNICAL MILESTONES

- Oil & Gas
 - MPA-11
- Geophysical
 - EES-17
- Environmental
 - EES-16

LA-UR-18-21536 LOS Alamos NATIONAL LABORATORY

Extracting eruption dynamics signatures of CO₂-driven cold-water geysers using machine learning

Maruti Mudunuru¹ (maruti@lanl.gov), Paul Johnson¹, Satish Karra¹, Omar Marcillo¹, Andrew Delorey¹, and George Guthrie¹

¹Earth and Environmental Sciences, Los Alamos National Laboratory.

EST.1943 —

ABSTRACT

Thermally driven geysers (such as Yellowstone) are characterized by frequent eruptions of liquid water and steam. Another subsurface system capable of producing periodic eruptions (similar to thermal geysers) is CO₂-driven cold water geysers. They erupt for over 24h at a time with relatively high velocity CO₂-driven discharge from wellbores. Growing interest in geologic carbon storage has brought attention to CO₂-driven cold water geysers because of its similarity to high velocity wellbore leakage process. In the CO₂-driven cold-water geysers, CO₂ (gas) evolves by the pressure reduction (flashing) of CO₂-rich fluids. Once the internal pressure of CO₂ (aqueous) becomes greater than that of the surrounding fluid, CO₂ separates from the fluid causing bubbles to nucleate, grow, and coalesce. Hydrostatic pressure reduction resulting from increasing CO₂ gas volume fraction enhances expansion of CO₂ bubbles leading to the eruption. In this poster, we wresent a feature extraction framework to identify a set of precursors to understand the eruption dynamics from time-series signals (seismic, acoustic, pressure, water depth, temperature, etc.) using machine learning. To be specific, we extract precursors that characterize the periodic eruption events from noisy data sets through time-series feature engineering and noise-filtering methods. These precursors can help in better understanding of the behavior of eruption times of CO₂-driven cold-water geysers.

Problem Description

- Substantial concern over the potential impact of groundwater resources is the case that a CO₂ sequestration reservoir were to leak
- · For leakage monitoring in large areas, one needs:
 - . To identify leaks quickly,
 - To discern leakage signals vs anthropocentric noise from large datasets, an
 To have a cost-efficient sensing system
- · Need a generic and robust framework to identify precursors
- Framework should be fast, scalable, and applicable for various applications

Objectiv

Discover precursors in noisy seismic and infrasound signals related to the CO₂-driven cold-water geyser at Chimayó geyser, NM

Acknowledgments

The authors thank Chick-Keller Postdoctoral Fellowship, UC/LANL Entrepreneuria Postdoctoral Fellowship, and LDRD-DR on Critical Stress for support

Eruption Dynamics Precursor Extraction using Machine Learning Hierarchical scalable time-series feature extraction 1. Chimayo geyser and sensor locations, NM 2. Sensor data information Raw time-series for each day Seismic-2 Seismic-3 · Closest station is couple of feet from the wel · Farthest station is 150m from the well · Sampling frequency - 200 KHz . No. of samples per day - 17280000 (UTC time) Sensor data analyzed for 3 days for the closest station 'RGEYB' Feature extraction 3a. RMS of seismic signals 3b. RMS of infrasound signals Eruption event at \approx 16hrs Noise reduction in extracted time-series features 4. Precursors related to seismic and infrasound signals Time-series/Signal features Kalman Filter Noise filtering methods Savitzky-Golay Filter Wiener Filter Features with reduced noise Precursors

Eruption event ends at ≈ 21.5 hrs

Seismic Component-1

Seismic Component-2

Seismic Component-3

Infrasound

BUSINESS MODEL CANVAS

Key Partners

- 2. Oil & Gas
 Service
 Companies
- ProcessMonitoringCompanies

Key Activities

- 2. Testing EDGE^{ip} in field
- 3. Small-scale field deployment

Key Resources

- 1. Packaging
- 2. Virtual testing with various field datasets
- 3. Copyright disclosure of EDGE^{ip}

Value Propositions

For small and medium-scale oil & gas producers that do not have realtime information on wells/production status, installing EDGE^{ip} software on their sensors will reduce downtime, maintenance, and help make more money.

Customer Relationships

- Direct interaction with sensor manufacturers
- Service for increased business value

Channels

- 1. Service companies
- IoT sensor/device manufacturers

99

People working in field

Customer Segments

- Well Production and Fluid Composition
- 2. Drilling & Completions
- Frac and Seismic Activity Monitoring
- 4. Spill, Environment, and Contaminant Monitoring

Ğ

5. Pipelines and Corrosion
Detection

Cost Structure

- 1. Prototype testing for virtual datasets (e.g. production, drilling and completions, etc)
- 2. Software UX/UI/App
- 3. Sensor interfacing and testing it on field
- 4. Field deployment and small-scale trials

4

Revenue Streams

1. Subscription

8

- 2. Licensing
- 3. Software as standalone product

CUSTOMER DISCOVERY & MARKET RESEARCH

HOW I BENEFITED FROM THE FELLOWSHIP?

Thank You!

MARUTI KUMAR MUDUNURU

Earth and Environmental Sciences

Los Alamos National Laboratory

Email: MARUTI@LANL.GOV

Phone: 505-667-1049

BACK-UP SLIDES

CUSTOMER KEY PROBLEM: PRODUCTION STATUS

What's my well production?
Any report-by-exception cases?

- Steam or Water or Gas or Oil?
- What is the real-time composition of my well?
- A loss of around \$500/hour is incurred if a well is not operational
- Analyses of wells using existing workflows take days to weeks of time
- Additional losses are incurred if a well is producing < 100-400 barrels of oil/day

"I hit a bottleneck in oil & gas production!!!

Can anyone help me increasing production?

Can anyone provide real-time status of my well production?"

- CEOs, Senior VPs, Investment Bankers, Business Executives @ DUG Executive Conference
- Senior Manager, Major Oil & Gas Company
- Blue Hill Research on Oil & Gas Production

CUSTOMER KEY PROBLEM: DRILLING COSTS

Cost of Drilling & Completing Well: \$5M - \$15M

5000-7000ft deep well | 7000-10000ft horizontals 50 fracture stages. | 20-24 pump trucks of 2000HP 10-15 million gallons of water 10-20 million pounds of proppant/sand

Time frame: 9-30 days

SOLUTION: REAL-TIME MONITORING & DATA PROCESSING

Oil & Gas Wells

How about we monitor production status here in real-time?

Oil-Water-Gas Separation

"Current status of monitoring oil & gas production takes days of time, we want a system that does this in near real-time"

Senior VP, Major Oil & Gas Company, @ DUG Executive Conference

SOLUTION - PRODUCT --- PROCESSING DATA AT EDGE

SOLUTION: INCREASED PRODUCTION. REDUCED COSTS.

Product: EDGE^{ip} Software on Raspberry Pi

- Massive Cost Reduction, Savings, Reduced Downtime
 - Energy-efficient processing (~power to charge a mobile)
 - Actionable information
 - A 10% increase in drilling and completions efficiency results in savings of \$1M/well
 - 10 % increase in production (~5000 oil barrels/year)

GO TO MARKET

PRODUCT STATUS AND VALUE PROPOSITION

- Current product status
 - Testing **EDGE**^{ip} software
 - Testing with a potential customer to train the algorithm
 - Datasets
 - Oil & Gas
 - Seismic/Geophysical
 - Environmental

BUSINESS MODEL

- Who Will We Sell To?
 - Sensor Manufacturers
 - Monitoring Companies
 - Oil & Gas producers
 - Seismic/Geophysical/Environmental
 - Subscription/License
- Partnership with Sensor/Processor
 Product Company
 - Oil Majors
 - Raspberry Pi Company
 - RaspberryShake Company

1. Sensor already installed at the well

Software Customized to Customer Sensor

Subscription or License

2. Before sensor is installed at a well

Partner with a Sensor Company

Customize to New Sensor

License

36